
Efficient handling of geometry
data in Apache Impala with
Parquet files

Csaba Ringhofer

Daniel Becker

2© 2023 Cloudera, Inc. All rights reserved.

What is Apache Impala?

• Distributed, massively parallel SQL database engine
• Originally designed for Hadoop
• Main feature is speed

– backend (distributed query execution) is written in C++
• uses LLVM runtime code generation

– frontend (query planning, optimisation) is in Java

3© 2023 Cloudera, Inc. All rights reserved.

What is Apache Impala?

• Supports various storage systems
– HDFS, Ozone
– S3, ADLS
– Kudu, HBase etc.

• Table formats
– Hive
– Iceberg

• File formats
– Parquet, ORC, text etc.

4© 2023 Cloudera, Inc. All rights reserved.

What is Apache Impala?
Architecture

Query Executor

Query Compiler

Query Executor

Query Coordinator

M
etadata

Query Compiler

Query Executor

Query Coordinator

M
etadata

Hive Metastore

HDFS NameNode

StateStore Catalog

minimal
FE (Java)

BE (C++)
M

etadata

Impalad (Executor) Impalad (Coordinator) Impalad (Both)

Metadata/control

Execution

Storage

Ranger

HDFS Kudu S3/ADLS HBase HDFS Kudu S3/ADLS HBase HDFS Kudu S3/ADLS HBase

5© 2023 Cloudera, Inc. All rights reserved.

Status of geospatial features in Impala
Summary

Already exists:
• Large number of geospatial functions

– Java functions (shared with Apache Hive)
• originally from Esri Spatial Framework for Hadoop

• Test coverage is basic - > not yet officially supported
In progress:

• Porting functions to c++
• Looking for file format as recommended storage

Planned:
• Extend test suite to become supported

6© 2023 Cloudera, Inc. All rights reserved.

Status of geospatial features in Impala
Limitations

• Mostly 2D geometry support
– only 1 geography function
– limited 3d / 4d support (Z/M)

• 6 types of geometry are available:
– POINT / LINESTRING / POLYGON (+ MULTI versions)

• No dedicated GEOMETRY data type, BINARY is used instead
• Only a set of functions

– no expression rewrites
– no advanced algorithms like geospatial join

7© 2023 Cloudera, Inc. All rights reserved.

Status of geospatial features in Impala
Recent improvements

• Geospatial functions originally implemented in Java
– slower than C++
– C++ code (Impala backend) has to call into Java code for each row,

huge overhead
• Reimplemented some of the most important functions in C++

– 26 out of ~140, including st_intersect()
– using boost::geometry
– results are binary compatible with the Java version
– 40-50x speedup in some cases

8© 2023 Cloudera, Inc. All rights reserved.

What table format to use for geospatial data?

• Hive table format
– files of a table stored in a file system directory
– partitions in subdirectories

• Iceberg table
– files of a table (and partitions) stored in metadata files
– file level min/max stats in metadata

• available at planning
• can be used for bounding rectangle check

• Kudu table - out of scope of presentation
– GeoMesa had a solution

9© 2023 Cloudera, Inc. All rights reserved.

What file format to use for geospatial data?
Considerations

Different use cases:
• Should work well with different file systems:

– Hadoop (HDFS or Ozone)
– object stores (S3, ABFS …)

• Efficient handling of different WHERE filters:
– select all - no filtering
– predicate on geometry column
– predicate on non-geometry columns

• SELECT * vs SELECT subset of columns (projection)

10© 2023 Cloudera, Inc. All rights reserved.

What file format to use for geospatial data?
IO considerations

Hadoop (HDFS):
• Files stored as 1 or more large blocks
• Blocks are present on 1 or more hosts (replicas)
• Reading data from local blocks is much faster
• Splittable file formats are preferred:

– schedule local blocks to hosts
– minimise data read from remote blocks

11© 2023 Cloudera, Inc. All rights reserved.

What file format to use for geospatial data?
IO considerations

Object stores:
• All data is remote
• Data caching is critical for performance

– Impala caches data to both memory and disk
– files have “host affinity” to improve caching

12© 2023 Cloudera, Inc. All rights reserved.

What file format to use for geospatial data?

Already supported
in Impala

Efficient Splittable Supported in
Iceberg

CSV YES NO YES NO

Parquet YES YES YES YES

ORC YES (read-only) YES YES YES

Shapefile NO YES NO NO

SpatiaLite NO YES NO NO

GeoJson /
EsriJson

NO NO NO NO

13© 2023 Cloudera, Inc. All rights reserved.

What file format to use for geospatial data?
File formats already supported by Impala

CSV
• Geometries stored as

– x/y (points) or
– WKT (Well-Known-Text) or
– hex/base64 WKB (Well-Known-Binary)

• Pros:
– can already be read by Impala
– many tools can export to it

• Cons:
– generally inefficient
– no indexing

GeoJson, EsriJson
• Similarly inefficient as CSV, not supported by Impala yet

14© 2023 Cloudera, Inc. All rights reserved.

What file format to use for geospatial data?
File formats already supported by Impala

Parquet
• Parquet is the file format most efficiently read by Impala
• Pros:

– very fast scanner in Impala
– min/max filters can be used for indexing
– columnar encoding/compression can store attributes efficiently

• Cons:
– does not seem to be commonly used in the geospatial world

ORC
• Mostly the same as Parquet

15© 2023 Cloudera, Inc. All rights reserved.

What file format to use for geospatial data?
File formats already supported by Impala

ORC
• Pros:

– mostly the same as for Parquet
– could be used with Hive Full ACID tables

• Cons:
– no known geospatial support
– read-only in Impala

16© 2023 Cloudera, Inc. All rights reserved.

What file format to use for geospatial data?
File formats not yet supported by Impala

Shapefile
• Geospatial vector data format for geographic information system (GIS) software
• Developed by Esri
• Can describe points, lines, and polygons (+ MULTI versions)
• Pros:

– commonly used, many tools support it
– the geospatial functions in Impala use this format in memory

• scanning could be potentially efficient
• Cons:

– not a single file but a collection of files for a dataset
• scanner would need to be extended to read multiple files together
• splitting can be problematic

17© 2023 Cloudera, Inc. All rights reserved.

What file format to use for geospatial data?
File formats not yet supported by Impala

SpatiaLite
• SQLite db file that can contain several geometries
• Used both as a full geospatial db (like a local PostGis) and as an

interchange format for single features
• Pros:

– commonly used
– SQLite has mature libraries
– has indexes, point lookup could be fast
– could be used for non-geospatial data too

• Cons:
– using a pack of SQLite dbs as a db format looks like a hack
– bulk read/write would probably be slow compared to Parquet

18© 2023 Cloudera, Inc. All rights reserved.

What file format to use for geospatial data?
File formats not yet supported by Impala

GeoJson / EsriJson
• Based on JSON
• Supports points, line strings, polygons and multi-part collections of these

types
• Pros:

– commonly used
– the ESRI Hive framework contains a SERDE

• Cons:
– generally inefficient (even more than CSV)
– no indexing
– splitting is problematic

19© 2023 Cloudera, Inc. All rights reserved.

Parquet deep dive
Introduction

• A compressed, efficient columnar data representation originally for the
Hadoop ecosystem

• Supports complex nested data structures based on the Dremel paper
– repetition levels, definition levels

• Supports various compressions and encodings
– compression on a per-column level
– encoding on a per-page level

20© 2023 Cloudera, Inc. All rights reserved.

Parquet deep dive
File format

• Rows divided into row groups
• Values stored in a column-oriented

way
• Column chunk: the part of a column

that is in a single row group
– may consist of multiple pages

• Each page has its own encoding
• File metadata is at the end (footer)

to allow single pass writing

21© 2023 Cloudera, Inc. All rights reserved.

Parquet deep dive
File format

• Rows divided into row groups
• Values stored in a column-oriented

way
• Column chunk: the part of a column

that is in a single row group
– may consist of multiple pages

• Each page has its own encoding
• File metadata is at the end (footer)

to allow single pass writing

22© 2023 Cloudera, Inc. All rights reserved.

Parquet deep dive
Filtering techniques

Column index
• Statistical information on the values of a column in a row group
• Contains min and max values for each page of a column
• We can skip pages that contain no values that satisfy the predicates

– for ordered columns we can use binary search
• Example:

SELECT id FROM tbl WHERE id >= 5;
– we can skip pages where the max value is less than 5

23© 2023 Cloudera, Inc. All rights reserved.

Parquet deep dive
Filtering techniques

Dictionary filtering
• Dictionary encoding

– store all the values that occur in a column chunk in a dictionary page
– in subsequent data pages, only store indices into the dictionary
– useful if the number of distinct values (NDV) is small

• if NDV is too large, we can use Bloom filters
• We can skip column chunks if the values in the dictionary do not satisfy the

predicates
• Example:

SELECT transaction_id WHERE customer_id = 125;
– we can skip the column chunk if the dictionary does not contain the

value 125

24© 2023 Cloudera, Inc. All rights reserved.

Parquet deep dive
Filtering techniques

Bloom filtering
• Probabilistic data structure

– if a value was inserted into the filter, a check returns true
– if a value was not inserted, a check returns false with high probability

(may also return true)
– Less precise than a dictionary but can be used with higher NDV

• Example:
SELECT transaction_id WHERE customer_id = 125;

– we can skip the column chunk if the Bloom filter returns false for the
value 125

25© 2023 Cloudera, Inc. All rights reserved.

Parquet deep dive
Filtering techniques

Lazy materialisation
• In a query where multiple columns are retrieved, first read and materialise

the columns that are involved in predicates
• Evaluate the predicates
• Only materialise the remaining columns for the rows that survive (i.e. are

not discarded by the predicates)
• Example:

SELECT transaction_id WHERE customer_id = 125;
– we only read transaction_id for the rows where customer_id is

125
•

26© 2023 Cloudera, Inc. All rights reserved.

Parquet deep dive
Libraries

Different Parquet libraries may read/write files differently!
• Java: parquet-mr
• C++: parquet-cpp (moved to Apache Arrow)
• Impala has its own C++ Parquet scanner
• Python: pyarrow.parquet / fastparquet

Many parameters to fine-tune writing.

27© 2023 Cloudera, Inc. All rights reserved.

Parquet with geospatial data
Existing solution: GeoParquet

GeoParquet provides a standard geospatial representation in Parquet
• Actively developed, this slide is based on v1 specification!
• Stores geometries as BINARY columns (byte array)

– Using WKB (well-known binary) format
• Adds JSON metadata to the Parquet row group header
• File level bounding box for filtering
• Already supported by several libraries

28© 2023 Cloudera, Inc. All rights reserved.

Parquet with geospatial data
GeoParquet - why not practical for Impala (yet)?

File vs table level format
• GeoParquet adds metadata at file level
• Impala needs table level metadata
• Per file variability would complicate query planning

Not optimal for Impala
• needs WKB -> shape conversion during reading
• Impala uses shapefile’s binary format in memory
• no page level indexing

29© 2023 Cloudera, Inc. All rights reserved.

Parquet with geospatial data
Point data

WKB (or other binary) vs 2 double columns?
lat/lon double column pair is much more efficient!

• Smaller size: no extra fields and length stored
• Decoding can be skipped for simple filters
• Allows min-max filters with existing Parquet libraries

Page level indexing is possible if pages contain “nearby” points
• Sorting the rows during insert can achieve this (e.g. z-order)

30© 2023 Cloudera, Inc. All rights reserved.

Parquet with geospatial data
Point data - partitioning

Point data can be easily partitioned by dividing space into cells
• e.g geohash at some resolution level
• cell size is critical

– to large: ineffective partitioning pruning
– too small: over partitioning, small file problem

• Iceberg tables: lat/lon min/max filters can be applied during planning
• Hive tables:

– query rewrite needed prune partitions during planning
– lat/lon min/max filter can be applied during execution

31© 2023 Cloudera, Inc. All rights reserved.

Parquet with geospatial data
Point data - sorting

How to get finer filtering than partitioning?

Sort points during insert using a space filling curve
• Groups “nearby” points together
• Improves file level filtering within partition
• Allows page level filtering

32© 2023 Cloudera, Inc. All rights reserved.

Parquet with geospatial data
Point data - adding cell_id column

Cell id of point can be added as separate column
• Smaller cell size than during partitioning
• Goal: small NDV (number of distinct values) per file

– low NDV -> very efficient encoding, minimal overhead
– cell_id can be used for filtering directly

• Query can be rewritten to also filter on cell_id
• Useful only if number of intersected cells is small

33© 2023 Cloudera, Inc. All rights reserved.

Parquet with geospatial data
Point data - adding cell_id column: benefits

Query can be rewritten to also filter on cell_id
• Derive = or IN filter from bounding box

WHERE lat <= … AND lon <= …
->

WHERE cell_id IN (<list if intersected cells>)
 AND lat <= … AND lon <= …

• Allows dictionary and bloom filtering on cell_id

34© 2023 Cloudera, Inc. All rights reserved.

Parquet with geospatial data
Point data - adding cell_id column: overhead

Low NDV allows dictionary encoding in Parquet
• storage cost: log(NDV) bits per row

RLE (run length encoding) is used for repeated elements
• very efficient encoding for sorted and low NDV data
• Theoretical storage cost: NDV * log(row_count)
• Example: NDV(cell_id) ~= 4K:

lat, lon cell_id (unsorted) cell_id (sorted)

1.1 GB 25 MB (2%) 200 KB (0.02%)

35© 2023 Cloudera, Inc. All rights reserved.

Benchmarks
Sample data

Openstreetmap North America point data
• 1.8 billion rows
• lat/lon coordinates + 5 string columns (often null)

Format/compression CSV / none Parquet/Snappy Parquet/ZSTD

Size 65 GB 32 GB 26 GB

36© 2023 Cloudera, Inc. All rights reserved.

Benchmarks
Sample data - loading

1. Convert OSM to CSV
2. Load CSV as text table in Impala
3. Rewrite table as Parquet in Impala

create table osm_north_america(
 lon DOUBLE, lat DOUBLE, cell_id BIGINT
 id STRING, name STRING, amenity STRING, shop STRING, leisure STRING
) partitioned by (bin_id bigint)
sort by (cell_id)
stored as parquet;

37© 2023 Cloudera, Inc. All rights reserved.

Benchmarks
Partitioning

Partition to 10° cells
• Function used: st_bin()

– Very simple x/y cell id
– Far from being “space filling”

• 87 non-empty partitions
• column: partition_id

38© 2023 Cloudera, Inc. All rights reserved.

Benchmarks
Partition pruning

Apply partition pruning:
 WHERE st_intersects(
 st_binenvelope(10, partition_id),
 st_envelope(

 st_linestring(<min_lon>, <min_lat>, <max_lon>, <max_lat>)))

partition_id is a partitioning column -> evaluated planning time

39© 2023 Cloudera, Inc. All rights reserved.

Benchmarks
Sorting

Sort using 0.1° cell id
• Function: st_bin()
• column: cell_id

40© 2023 Cloudera, Inc. All rights reserved.

Benchmarks
Page level filtering

Using Parquet’s min-max filters need predicates on “raw” DOUBLE columns.

Bounding box filter with geospatial functions:
WHERE st_intersects(st_point(lon, lat), st_envelope(st_linestring(
 <min_lon>, <min_lat>, <max_lon>, <max_lat>)))

Rewrite as:
WHERE <min_lon> < lon AND <min_lat> < lat
 AND <max_lon> > lon AND <max_lat> < lat

41© 2023 Cloudera, Inc. All rights reserved.

Benchmarks
Query 1: Bay area

Rectangle around bay area
• 11M points in bounding box
• ~0.35s (single thread)*
• Dominated by decompression time (Snappy)

*: multithreaded IO + warm cache

select count(*)
 from osm_north_america
 where lat > 37 and lon > -123 and lat < 38 and lon < -122

42© 2023 Cloudera, Inc. All rights reserved.

Benchmarks
Query 1: Bay area (details)

Rectangle around bay area
• 11M points in bounding box
• ~0.35s (single thread)*
• Dominated by decompression time

Total time IO bytes IO time* Decompression time Materialization time

Full table scan 24s 23.3GB 6s 12s 5.2s

File level filter 0.45s 650MB ~13ms 290ms 120ms

File + page level filter 0.35s 203MB ~13ms 120ms 60ms

*: multithreaded IO + warm cache

43© 2023 Cloudera, Inc. All rights reserved.

Benchmarks
Query 2: single cell in San Francisco

Rectangle around bay area
• 610K points in bounding box
• ~0.25s (single thread)*
• Dominated by decompression time (Snappy)

*: multithreaded IO + warm cache

select count(*)
 from osm_north_america
 where lat > 37.75 and lon > -122.45
 and lat < 37.85 and lon < -122.35

44© 2023 Cloudera, Inc. All rights reserved.

Benchmarks
Query 2: single cell in San Francisco

Rectangle around bay area
• 610K points in bounding box
• ~0.25s (single thread)*
• Dominated by query startup overhead

*: multithreaded IO + warm cache
**: not semantically equivalent

Total time IO bytes IO time* Decompression time Materialization time

File level filter 0.45s 585MB ~12ms 280ms 86ms

File + page level filter 0.25s 12.9MB ~12ms 27ms 11ms

Cell id filter ** 0.12s 1.3MB ~4ms ~0ms 4ms

45© 2023 Cloudera, Inc. All rights reserved.

Benchmarks
Takeaways

Min-max stats allow efficient bounding box filtering
• No code change needed, only query rewrites
• Page sizes can be reduced for more fine grained filtering

Simpler solution:
• Sort data by a space filling curve

– allow both file and page level min/max filtering
• Use Iceberg to get planning time filtering

46© 2023 Cloudera, Inc. All rights reserved.

Benchmarks
Takeaways - decompression times

Decompression of pages can dominate execution time
• ~2x more time than bounding box check (Snappy)
• FLOAT/DOUBLE has no encoding to reduce pre-compression size

Possible improvements:
• Skip compression if not efficient
• Investigate different compressions
• Improve lazy materialization

– Currently all predicate columns are processed eagerly

47© 2023 Cloudera, Inc. All rights reserved.

Complex geometries

• Store detailed geometry as BINARY
• Add 4 double columns to store bounding box

– Allows min/max filtering
– Can be large overhead from (e.g. for rectangle)

• Bounding box can be stored at lower precision
• cell_id predicates need to handle multi-cell geometries

– Single cell and multi-cell geometries can be separated

48© 2023 Cloudera, Inc. All rights reserved.

Questions?

49© 2023 Cloudera, Inc. All rights reserved.

Parquet with geospatial data
Point data - sorting

Sort points during insert using a space filling curve
• Groups “nearby” points together
• Pages will likely have a smaller bounding box then the whole file

Two approaches:
• “Total sorting” with z-ordering
• “Cell sorting” using cell_id from some geohash function

50© 2023 Cloudera, Inc. All rights reserved.

Parquet with geospatial data
Point data - cell_id vs z-ordering

Pros of cell sorting:
- cell_id can be used for filtering directly
- faster sorting during insert: n * log(n) -> n * log(ndv)

51© 2023 Cloudera, Inc. All rights reserved.

Parquet with geospatial data
Point data - adding cell_id column

Benchmarks use the “cell sorting” approach:
• Geohash function: st_bin(cell_size, geom) by Esri

– Very simple, not a “real” space filling curve
• cell_id added as BIGINT column
• The goal is to have small NDV (number of distinct values) per file

– low NDV -> very efficient encoding, minimal overhead
– cell_id can be used for filtering directly

52© 2023 Cloudera, Inc. All rights reserved.

What file format to use for geospatial data?
File formats already supported by Impala

GeoParquet
• A project to provide a standard geospatial representation in Parquet
• Stores geometries as byte arrays in WKB format

– probably more options will be added in the future
• Adds some JSON metadata to the Parquet header
• Pros:

– some tools support it (e.g. GeoPandas)
• Cons:

– would be very slow at the moment
• needs WKB -> shapefile conversion during reading

– Impala uses the shapefile format in memory
• uses WKB even for point files
• no concept of indexing (only a bounding box in the Parquet header)

53© 2023 Cloudera, Inc. All rights reserved.

What file format to use for geospatial data?
File formats already supported by Impala

HBase / Kudu
• Could be used with a geo hash included in the primary key

– GeoMesa does something similar
• Pros:

– efficient update/delete
– efficient indexing

• Cons:
– Kudu: limited scale/availability
– HBase: inefficient range scans

