
Efficient handling of geometry 
data in Apache Impala with 
Parquet files

Csaba Ringhofer

Daniel Becker



2© 2023 Cloudera, Inc. All rights reserved.

What is Apache Impala?

• Distributed, massively parallel SQL database engine
• Originally designed for Hadoop
• Main feature is speed

– backend (distributed query execution) is written in C++
• uses LLVM runtime code generation

– frontend (query planning, optimisation) is in Java
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What is Apache Impala?

• Supports various storage systems
– HDFS, Ozone
– S3, ADLS
– Kudu, HBase etc.

• Table formats
– Hive
– Iceberg

• File formats
– Parquet, ORC, text etc.
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What is Apache Impala?
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Status of geospatial features in Impala
Summary

Already exists:
• Large number of geospatial functions

– Java functions (shared with Apache Hive) 
• originally from Esri Spatial Framework for Hadoop

• Test coverage is basic - > not yet officially supported
In progress:

• Porting functions to c++
• Looking for file format as recommended storage

Planned:
• Extend test suite to become supported
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Status of geospatial features in Impala
Limitations

• Mostly 2D geometry support
– only 1 geography function
– limited 3d / 4d support (Z/M)

• 6 types of geometry are available:
– POINT / LINESTRING / POLYGON (+ MULTI versions)

• No dedicated GEOMETRY data type, BINARY is used instead
• Only a set of functions

– no expression rewrites
– no advanced algorithms like geospatial join
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Status of geospatial features in Impala
Recent improvements

• Geospatial functions originally implemented in Java
– slower than C++
– C++ code (Impala backend) has to call into Java code for each row, 

huge overhead
• Reimplemented some of the most important functions in C++

– 26 out of ~140, including st_intersect()
– using boost::geometry
– results are binary compatible with the Java version
– 40-50x speedup in some cases
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What table format to use for geospatial data?

• Hive table format
– files of a  table stored in a file system directory
– partitions in subdirectories

• Iceberg table
– files of a table (and partitions) stored in metadata files
– file level min/max stats in metadata

• available at planning
• can be used for bounding rectangle check

• Kudu table - out of scope of presentation
– GeoMesa had a solution
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What file format to use for geospatial data?
Considerations

Different use cases:
• Should work well with different file systems:

– Hadoop (HDFS or Ozone)
– object stores (S3, ABFS … )

• Efficient handling of different WHERE filters:
– select all - no filtering
– predicate on geometry column
– predicate on non-geometry columns

• SELECT * vs SELECT subset of columns (projection)



10© 2023 Cloudera, Inc. All rights reserved.

What file format to use for geospatial data?
IO considerations

Hadoop (HDFS):
• Files stored as 1 or more large blocks
• Blocks are present on 1 or more hosts (replicas)
• Reading data from local blocks is much faster
• Splittable file formats are preferred:

– schedule local blocks to hosts
– minimise data read from remote blocks
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What file format to use for geospatial data?
IO considerations

Object stores:
• All data is remote
• Data caching is critical for performance 

– Impala caches data to both memory and disk
– files have “host affinity” to improve caching
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What file format to use for geospatial data?

Already supported 
in Impala

Efficient Splittable Supported in 
Iceberg

CSV YES NO YES NO

Parquet YES YES YES YES

ORC YES (read-only) YES YES YES

Shapefile NO YES NO NO

SpatiaLite NO YES NO NO

GeoJson / 
EsriJson

NO NO NO NO
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What file format to use for geospatial data?
File formats already supported by Impala

CSV
• Geometries stored as

– x/y (points) or 
– WKT (Well-Known-Text) or
– hex/base64 WKB (Well-Known-Binary)

• Pros:
– can already be read by Impala
– many tools can export to it

• Cons:
– generally inefficient
– no indexing

GeoJson, EsriJson
• Similarly inefficient as CSV, not supported by Impala yet
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What file format to use for geospatial data?
File formats already supported by Impala

Parquet
• Parquet is the file format most efficiently read by Impala
• Pros:

– very fast scanner in Impala
– min/max filters can be used for indexing
– columnar encoding/compression can store attributes efficiently

• Cons:
– does not seem to be commonly used in the geospatial world

ORC
• Mostly the same as Parquet
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What file format to use for geospatial data?
File formats already supported by Impala

ORC
• Pros:

– mostly the same as for Parquet
– could be used with Hive Full ACID tables

• Cons:
– no known geospatial support
– read-only in Impala
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What file format to use for geospatial data?
File formats not yet supported by Impala

Shapefile
• Geospatial vector data format for geographic information system (GIS) software
• Developed by Esri 
• Can describe points, lines, and polygons (+ MULTI versions)
• Pros:

– commonly used, many tools support it
– the geospatial functions in Impala use this format in memory

• scanning could be potentially efficient
• Cons:

– not a single file but a collection of files for a dataset
• scanner would need to be extended to read multiple files together
• splitting can be problematic
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What file format to use for geospatial data?
File formats not yet supported by Impala

SpatiaLite
• SQLite db file that can contain several geometries
• Used both as a full geospatial db (like a local PostGis) and as an 

interchange format for single features
• Pros:

– commonly used
– SQLite has mature libraries
– has indexes, point lookup could be fast
– could be used for non-geospatial data too

• Cons:
– using a pack of SQLite dbs as a db format looks like a hack
– bulk read/write would probably be slow compared to Parquet
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What file format to use for geospatial data?
File formats not yet supported by Impala

GeoJson / EsriJson
• Based on JSON
• Supports points, line strings, polygons and multi-part collections of these 

types
• Pros:

– commonly used
– the ESRI Hive framework contains a SERDE

• Cons:
– generally inefficient (even more than CSV)
– no indexing
– splitting is problematic
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Parquet deep dive
Introduction

• A compressed, efficient columnar data representation originally for the 
Hadoop ecosystem

• Supports complex nested data structures based on the Dremel paper
– repetition levels, definition levels

• Supports various compressions and encodings
– compression on a per-column level
– encoding on a per-page level
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Parquet deep dive
File format

• Rows divided into row groups
• Values stored in a column-oriented 

way
• Column chunk: the part of a column 

that is in a single row group
– may consist of multiple pages

• Each page has its own encoding
• File metadata is at the end (footer) 

to allow single pass writing
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Parquet deep dive
File format

• Rows divided into row groups
• Values stored in a column-oriented 

way
• Column chunk: the part of a column 

that is in a single row group
– may consist of multiple pages

• Each page has its own encoding
• File metadata is at the end (footer) 

to allow single pass writing
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Parquet deep dive
Filtering techniques

Column index
• Statistical information on the values of a column in a row group
• Contains min and max values for each page of a column
• We can skip pages that contain no values that satisfy the predicates

– for ordered columns we can use binary search
• Example:

SELECT id FROM tbl WHERE id >= 5;
– we can skip pages where the max value is less than 5
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Parquet deep dive
Filtering techniques

Dictionary filtering
• Dictionary encoding

– store all the values that occur in a column chunk in a dictionary page
– in subsequent data pages, only store indices into the dictionary
– useful if the number of distinct values (NDV) is small

• if NDV is too large, we can use Bloom filters
• We can skip column chunks if the values in the dictionary do not satisfy the 

predicates
• Example:

SELECT transaction_id WHERE customer_id = 125;
– we can skip the column chunk if the dictionary does not contain the 

value 125
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Parquet deep dive
Filtering techniques

Bloom filtering
• Probabilistic data structure

– if a value was inserted into the filter, a check returns true
– if a value was not inserted, a check returns false with high probability 

(may also return true)
– Less precise than a dictionary but can be used with higher NDV

• Example:
SELECT transaction_id WHERE customer_id = 125;

– we can skip the column chunk if the Bloom filter returns false for the 
value 125
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Parquet deep dive
Filtering techniques

Lazy materialisation
• In a query where multiple columns are retrieved, first read and materialise 

the columns that are involved in predicates
• Evaluate the predicates
• Only materialise the remaining columns for the rows that survive (i.e. are 

not discarded by the predicates)
• Example:

SELECT transaction_id WHERE customer_id = 125;
– we only read transaction_id for the rows where customer_id is 

125
•
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Parquet deep dive
Libraries

Different Parquet libraries may read/write files differently!
• Java: parquet-mr 
• C++: parquet-cpp (moved to Apache Arrow)   
• Impala has its own C++ Parquet scanner
• Python: pyarrow.parquet / fastparquet

Many parameters to fine-tune writing.
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Parquet with geospatial data
Existing solution: GeoParquet

GeoParquet provides a standard geospatial representation in Parquet
• Actively developed, this slide is based on v1 specification!
• Stores geometries as BINARY columns (byte array)

– Using WKB (well-known binary) format
• Adds JSON metadata to the Parquet row group header
• File level bounding box for filtering
• Already supported by several libraries
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Parquet with geospatial data
GeoParquet - why not practical for Impala (yet)?

File vs table level format
• GeoParquet adds metadata at file level
• Impala needs table level metadata
• Per file variability would complicate query planning

Not optimal for Impala
• needs WKB -> shape conversion during reading
• Impala uses shapefile’s binary format in memory
• no page level indexing
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Parquet with geospatial data
Point data

WKB (or other binary) vs 2 double columns?
lat/lon double column pair is much more efficient!

• Smaller size: no extra fields and length stored
• Decoding can be skipped for simple filters
• Allows min-max filters with existing Parquet libraries

Page level indexing is possible if pages contain “nearby” points
• Sorting the rows during insert can achieve this (e.g. z-order)
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Parquet with geospatial data
Point data - partitioning

Point data can be easily partitioned by dividing space into cells
• e.g geohash at some resolution level
• cell size is critical

– to large: ineffective partitioning pruning
– too small: over partitioning, small file problem

• Iceberg tables: lat/lon min/max filters can be applied during planning
• Hive tables:

– query rewrite needed prune partitions during planning
– lat/lon min/max filter can be applied during execution
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Parquet with geospatial data
Point data - sorting

How to get finer filtering than partitioning?

Sort points during insert using a space filling curve
• Groups “nearby” points together
• Improves file level filtering within partition
• Allows page level filtering
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Parquet with geospatial data
Point data - adding cell_id column

Cell id of point can be added as separate column
• Smaller cell size than during partitioning
• Goal: small NDV (number of distinct values) per file

– low NDV -> very efficient encoding, minimal overhead
– cell_id can be used for filtering directly

• Query can be rewritten to also filter on cell_id
• Useful only if number of intersected cells is small
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Parquet with geospatial data
Point data - adding cell_id column: benefits

Query can be rewritten to also filter on cell_id
• Derive = or IN filter from bounding box 

WHERE lat <= … AND lon <= …
->

WHERE cell_id IN (<list if intersected cells>)
  AND lat <= … AND lon <= …

• Allows dictionary and bloom filtering on cell_id
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Parquet with geospatial data
Point data - adding cell_id column: overhead 

Low NDV allows dictionary encoding in Parquet
• storage cost: log(NDV)  bits per row

RLE (run length encoding) is used for repeated elements
• very efficient encoding for sorted and low NDV data
• Theoretical storage cost: NDV * log(row_count )
• Example: NDV(cell_id)  ~= 4K:

 
lat, lon cell_id (unsorted)  cell_id (sorted)

1.1 GB 25 MB (2%) 200 KB (0.02%)



35© 2023 Cloudera, Inc. All rights reserved.

Benchmarks
Sample data

Openstreetmap North America point data
• 1.8 billion rows
• lat/lon coordinates + 5 string columns (often null)

 

Format/compression CSV / none Parquet/Snappy Parquet/ZSTD

Size 65 GB 32 GB 26 GB
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Benchmarks
Sample data - loading

1. Convert OSM to CSV
2. Load CSV as text table in Impala 
3. Rewrite table as Parquet in Impala

create table osm_north_america(
  lon DOUBLE, lat DOUBLE, cell_id BIGINT
  id STRING, name STRING, amenity STRING, shop STRING, leisure STRING
) partitioned by (bin_id bigint)
sort by (cell_id)
stored as parquet;
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Benchmarks
Partitioning

Partition to 10° cells
• Function used: st_bin()

– Very simple x/y cell id
– Far from being “space filling”

• 87 non-empty partitions
• column: partition_id
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Benchmarks
Partition pruning

Apply partition pruning:
 WHERE st_intersects(
   st_binenvelope(10, partition_id),
     st_envelope(

   st_linestring(<min_lon>, <min_lat>, <max_lon>, <max_lat>)))

partition_id is a partitioning column -> evaluated planning time
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Benchmarks
Sorting

Sort using 0.1° cell id
• Function: st_bin()
• column: cell_id 
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Benchmarks
Page level filtering

Using Parquet’s min-max filters need predicates on “raw” DOUBLE columns.

Bounding box filter with geospatial functions:
WHERE st_intersects(st_point(lon, lat), st_envelope(st_linestring(
       <min_lon>, <min_lat>, <max_lon>, <max_lat>)))

Rewrite as:
WHERE <min_lon> < lon AND <min_lat> < lat
  AND <max_lon> > lon AND <max_lat> < lat
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Benchmarks
Query 1: Bay area

Rectangle around bay area
• 11M points in bounding box
• ~0.35s (single thread)*
• Dominated by decompression time (Snappy)

*: multithreaded IO + warm cache

select count(*)
  from osm_north_america
  where  lat > 37 and lon > -123 and lat < 38 and lon < -122
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Benchmarks
Query 1: Bay area (details)

Rectangle around bay area
• 11M points in bounding box
• ~0.35s (single thread)*
• Dominated by decompression time

Total time IO bytes IO time* Decompression time Materialization time

Full table scan 24s 23.3GB 6s 12s 5.2s

File level filter 0.45s 650MB ~13ms 290ms 120ms

File + page level filter 0.35s 203MB ~13ms 120ms 60ms

*: multithreaded IO + warm cache
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Benchmarks
Query 2: single cell in San Francisco

Rectangle around bay area
• 610K points in bounding box
• ~0.25s (single thread)*
• Dominated by decompression time (Snappy)

*: multithreaded IO + warm cache

select count(*)
    from osm_north_america
    where lat > 37.75 and lon > -122.45 
      and lat < 37.85 and lon < -122.35
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Benchmarks
Query 2: single cell in San Francisco

Rectangle around bay area
• 610K points in bounding box
• ~0.25s (single thread)*
• Dominated by query startup overhead

*: multithreaded IO + warm cache
**: not semantically equivalent

   

Total time IO bytes IO time* Decompression time Materialization time

File level filter 0.45s 585MB ~12ms 280ms 86ms

File + page level filter 0.25s 12.9MB ~12ms 27ms 11ms

Cell id filter ** 0.12s 1.3MB ~4ms ~0ms 4ms
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Benchmarks
Takeaways

Min-max stats allow efficient bounding box filtering
• No code change needed, only query rewrites
• Page sizes can be reduced for more fine grained filtering

Simpler solution:
• Sort data by a space filling curve

– allow both file and page level min/max filtering
• Use Iceberg to get planning time filtering
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Benchmarks
Takeaways - decompression times

Decompression of pages can dominate execution time
• ~2x more time than bounding box check (Snappy)
• FLOAT/DOUBLE has no encoding to reduce pre-compression size

Possible improvements:
• Skip compression if not efficient
• Investigate different compressions
• Improve lazy materialization

– Currently all predicate columns are processed eagerly
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Complex geometries

• Store detailed geometry as BINARY
• Add 4 double columns to store bounding box

– Allows min/max filtering
– Can be large overhead from (e.g. for rectangle)

• Bounding box can be stored at lower precision
• cell_id predicates need to handle multi-cell geometries

– Single cell and multi-cell geometries can be separated
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Questions?
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Parquet with geospatial data
Point data - sorting

Sort points during insert using a space filling curve
• Groups “nearby” points together
• Pages will likely have a smaller bounding box then the whole file

Two approaches:
• “Total sorting” with z-ordering
• “Cell sorting” using cell_id from some geohash function
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Parquet with geospatial data
Point data - cell_id vs z-ordering

Pros of cell sorting:
- cell_id can be used for filtering directly
- faster sorting during insert: n * log(n) -> n * log(ndv)
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Parquet with geospatial data
Point data - adding cell_id column

Benchmarks use the “cell sorting” approach:
• Geohash function: st_bin(cell_size, geom) by Esri 

– Very simple, not a “real” space filling curve
• cell_id added as BIGINT column
• The goal is to have small NDV (number of distinct values) per file

– low NDV -> very efficient encoding, minimal overhead
– cell_id can be used for filtering directly
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What file format to use for geospatial data?
File formats already supported by Impala

GeoParquet
• A project to provide a standard geospatial representation in Parquet
• Stores geometries as byte arrays in WKB format

– probably more options will be added in the future
• Adds some JSON metadata to the Parquet header
• Pros:

– some tools support it (e.g. GeoPandas)
• Cons:

– would be very slow at the moment
• needs WKB -> shapefile conversion during reading

– Impala uses the shapefile format in memory
• uses WKB even for point files
• no concept of indexing (only a bounding box in the Parquet header)
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What file format to use for geospatial data?
File formats already supported by Impala

HBase / Kudu
• Could be used with a geo hash included in the primary key

– GeoMesa does something similar
• Pros:

– efficient update/delete
– efficient indexing

• Cons:
– Kudu: limited scale/availability
– HBase: inefficient range scans


