
IMPALA learned some new tricks while living
on
Zoltán Borók-Nagy

Agenda

● Legacy Hive tables

● Iceberg

● Impala

● Iceberg + Impala

● Future work

The Hive table format
Files in a directory

The table is just a directory on HDFS
Files have a common schema

└── my_table
 ├── 0.csv
 └── 1.csv

Hive Metastore
● List of tables
● Locations on the FileSystem
● Columns & types
● File format

The schema is stored in the Hive
Metastore

The file list is not stored, it is retrieved from the file system

Tables can be partitioned
Files in a directory

Partition values are encoded in the
directory paths

.
└── year=2023
 ├── month=3
 └── month=4
 ├── day=1
 ├── day=2
 └── day=3
 ├── 0.csv
 └── 1.csv

Hive Metastore
● List of tables
● Locations on the FileSystem
● Columns & types
● File format
● Partition information (location,

file format)

The schema is stored in the Hive
Metastore

Problems with Hive tables

● Atomicity & consistency
● Schema evolution is limited
● Partitioning

○ Only value-based partitioning is supported
■ year=2023

○ Partition layout is set in stone
■ To change the partitioning, one needs to rewrite everything

○ Scalability issues with high number of partitions
● Cannot ROLLBACK table state
● No time travel, i.e. no replayable queries
● Row-level modifications are not really feasible
● Small files issue is hard to tackle

Nothing is perfect

Object stores introduced new problems
Like we haven’t had enough problems

● Atomic writes/renames are not supported
○ Readers can observe writes in-progress
○ Aborted operations might leave half-written data

● Eventual consistency (this has been resolved since)

● Directory listings are expensive

What is Iceberg?

● It is a table format for huge data sets. So it defines how
○ metadata is stored
○ data files can be organized

● It is also a library
○ Compute engines can use this library to directly read/write the table
○ No mediator component required

Apache Iceberg internals

File System / Object Store

Iceberg
Metadata
Layer

Metadata file

manifest
list

manifest
file

manifest
file

Data files Data filesData files

Metadata fileMetadata file

manifest
list

Iceberg Catalog

db1.tbl

ACID guarantees
Snapshot isolation

● All files are immutable
● Readers always read a

consistent snapshot
● Updates create a new

snapshot
○ Atomic operation,

using optimistic
concurrency

● Time-travel queries

File System / Object Store

Metadata file

manifest
list

manifest
file

manifest
file

Data files Data filesData files

Metadata fileMetadata file

manifest
list

Schema evolution

● Schema elements get unique field ids:
○ “ID”: INT : 1
○ “First Name” : STRING : 2
○ “Last Name” : STRING : 3

● Iceberg field ids are written to the data files’ metadata as well
○ File scanners retrieve columns from data files based on their field id

● Field ids remain unchanged on schema evolution
○ Columns can be added / dropped / renamed / reordered

Flexible partitioning

● Partition by transformations
○ IDENTITY, TRUNCATE, BUCKET, YEAR, MONTH, DAY, HOUR
○ Now it’s possible to partition based on high-NDV columns

● Partitioning is “hidden”
○ Partition information is stored in the Iceberg metadata layer
○ No need to explicitly write partition columns (YEAR, MONTH, etc.)
○ No need to add extra predicates to queries for partition pruning

SELECT * FROM tbl WHERE ts = ‘2023-04-21 20:56:08’
AND YEAR = 2023 AND MONTH = 4 AND DAY = 21;

■ All this can be automatically extracted from ‘2023-04-21 20:56:08’
If the table is partitioned by DAY(ts)

Partition evolution
No other table format can do this trick

● Partition information is
stored in Iceberg metadata
layer
○ Not in the directory

structure
● It’s possible to just change

the partitioning completely
○ Or just refine existing

partitioning
● And write new data based

on the new partition layout

1 2 3 4 5 6 7
8 9 10 11 12 13 14

15 16 17 18 19 20 21
22 23 24 25 26 27 28

29 30 31

2022-01-01

Partitioned by Month(date) Partitioned by Day(date)

2021-10-01 2021-11-01 2021-12-01 2022-01…

SELECT * FROM SALES_ORDER
WHERE
DATE > 2021-11-23 AND
DATE < 2022-01-19

Partitions included in query plan
t

Table maintenance

● Rollback
○ Restore earlier state

● Expire old snapshots (GDPR, CCPA)

● Compaction
○ Fix small files issues
○ Eliminate delete delta files

Coordinator

Apache Impala

Coordinator
Parsing
Planning
Scheduling

ExecutorExecutor
Executor
Execute query
fragments

CatalogD
Loads and
caches table
metadata

Hive Metastore

● Distributed, massively scalable query engine

StatestoreD
Cluster

membership
information

SQL

HDFS Namenode,
S3, ADLS

About Impala

● Frontend (query parsing, planning) is written in Java
● Backend (query execution) is written in C++
● Optimized for query performance

○ Completely pipelined, no checkpointing
○ Caches table metadata
○ Caches remote reads
○ Code generation via LLVM to speed up queries

● Limited write capabilities in the past

About Impala

● Various storage systems and file formats
○ HDFS, Ozone, S3, ADLS, basically anything HDFS-client compatible
○ Parquet, ORC, Avro, JSON, text

● Different authentication methods
○ LDAP, Kerberos, SAML, JWT

● Fine-grained authorization policies (row filtering, column masking)
○ Via Apache Ranger

● Admission control to limit the number of concurrent queries
● Spilling operators to execute queries in a given memory limit
● And a lot more…

Executor

Why Impala + Iceberg integration is special?

● Written in Java
● Interacts with Iceberg API

○ loadTable()
○ planFiles() - predicate pushdown
○ appendFiles(), commit(), etc.

Coordinator
Frontend
Parsing
Planning

CatalogD
Loads, caches,
and updates
metadata

Executor
Executor
Execute query
fragments

● Highly optimized C++ code
● Uses Impala’s own scanners / writers

○ Field-id resolution
● Specific operators to deal with V2 tables

○ Reading/writing position delete files

CREATE Iceberg tables

CREATE TABLE ice_t (i INT, s STRING)

STORED BY ICEBERG;

CREATE EXTERNAL TABLE ice_t STORED BY ICEBERG

TBLPROPERTIES ('iceberg.catalog'='my_catalog',

 'iceberg.table_identifier'='my.tbl');

CREATE partitioned Iceberg tables

CREATE TABLE ice_t (i INT, s STRING)

PARTITIONED BY SPEC (i)

STORED BY ICEBERG;

CREATE TABLE ice_t (i INT, s STRING)

PARTITIONED BY SPEC (TRUNCATE(3, s))

STORED BY ICEBERG;

● IDENTITY
● BUCKET(N, col)
● TRUNCATE(N, col)
● YEAR(col)
● MONTH(col)
● DAY(col)
● HOUR(col)

Reading Iceberg tables

● Arbitrary SELECT queries
SELECT * FROM ice_t;

SELECT * FROM ice_t JOIN non_ice_t ON(<cond>);

● Time-travel

Uses table schema and table data of the specified time / version
SELECT * FROM ice_t FOR SYSTEM_TIME AS OF '2023-09-27 11:48:12';
SELECT * FROM ice_t FOR SYSTEM_TIME AS OF now() - interval 5 days;

SELECT * FROM ice_t FOR SYSTEM_VERSION AS OF 123456;

Predicates are pushed
down to Iceberg

Ingesting data into Iceberg tables

● INSERT INTO
INSERT INTO ice_t VALUES (1, 2);
INSERT INTO ice_t SELECT * FROM other_t;

● INSERT OVERWRITE
INSERT OVERWRITE ice_t VALUES (1, 2);
INSERT OVERWRITE ice_t SELECT * FROM other_t;

● LOAD DATA
LOAD DATA INPATH 'file_or_directory_path' [OVERWRITE]
INTO TABLE tablename;

● Hidden partitioning
○ No need for PARTITION() clause

● Impala writes minimum number of data files via shuffling data based on partitioning

TRUNCATE Iceberg tables

● Delete all records:

TRUNCATE creates new empty snapshot

TRUNCATE TABLE ice_t;

One can still retrieve old data via time travel

Row-level modifications

Merge-on-read
● Iceberg V2-only
● Writes delete files

○ Contain information about
deleted rows

● Low write amplification
● High read amplification
● Table readers need to exclude

deleted rows from result
● Useful for small amount of

deletes

Copy-on-write
● Replace old data files with new

ones
● High write amplification
● No read amplification
● Useful for rewriting lots of data

DELETE / UPDATE existing records (GDPR, Data correction)

DELETE FROM Iceberg tables

Only for Iceberg V2 tables
TBLPROPERTIES (’format-version’=’2’);

Only Merge-on-read is supported
DELETE FROM ice_t WHERE c1 = 100;

DELETE t1 FROM ice_t t1 JOIN other_t t2 ON t1.x = t2.x;

Impala writes as few delete files as possible, typically one per partition

Position deletes

ALTERing Iceberg tables

● Rename the whole table:

ALTER TABLE ... RENAME TO ...

● Schema evolution

ALTER TABLE ... CHANGE COLUMN ...

ALTER TABLE ... ADD COLUMNS ...

ALTER TABLE ... DROP COLUMN ...

● Partition evolution

ALTER TABLE ice_p SET PARTITION SPEC (TRUNCATE(3, s), HOUR(t), i);

ROLLBACK

ALTER TABLE ice_t EXECUTE ROLLBACK(3088747670581784990);

● If the older snapshot is available, it just restores that state of the table

Iceberg Catalog

Metadata file Metadata file

db1.tbl

EXPIRE SNAPSHOTS

ALTER TABLE ice_t
EXECUTE expire_snapshots('2022-01-04 10:00:00');

● Expires old snapshots, i.e. removes metadata files and data files that are
only pointed by them

● respects the minimum number of snapshots to keep:
history.expire.min-snapshots-to-keep table property.

Table Migration In-Place

Avoids rewriting data files, just write the metadata.
Partition layout remains unchanged.

 ALTER TABLE tbl CONVERT TO ICEBERG;File

File

File

File File

File

Hive Warehouse
Directory

HMS

Iceberg Warehouse
Directory

HMS
(Iceberg Catalog)

manifest
list

manifest manifest

point to source Hive table’s
data files

Snapshot

Table Migration CTAS

Data files recreated in addition to creation of
Iceberg tables and corresponding metadata

CREATE TABLE ctas
PARTITIONED BY SPEC(z)
STORED BY ICEBERG AS
SELECT x, y, z FROM t;

File

File

File

File File

File

Hive Warehouse
Directory

HMS

Iceberg Warehouse
Directory

HMS
(Iceberg Catalog)

manifest
list

manifest manifest

Snapshot

File

File

File

File File

File

Rewrite data files

Near-future work

● UPDATE statement (then eventually MERGE)
● Querying metadata of tables (history, files, partitions, snapshots)
● OPTIMIZE - compaction!
● Reading tables with equality deletes

○ Writing equality delete files is not planned
● Branching / tagging
● Column stats in Puffin

Limitations (at the time of writing)

● Copy-on-write
○ OTOH our merge-on-read is very efficient
○ OPTIMIZE (compaction) is coming soon

● Can only write Parquet files
● Following types are not supported currently:

○ TIMESTAMPTZ type
■ But Impala is able to correctly read such tables

○ UUID type
○ TIME
○ Fixed(L)

● We might eventually add support for the above
○ Contributions are welcome!

Questions?

