
Intelligent Utilization Aware Scheduling
for Impala Virtual Compute Clusters
Kurt Deschler, Gokul Kolady, Abhishek Rawat, David Rorke, Andrew
Sherman, Riza Suminto

Outline

● Introduction to Apache Impala
● Scaling Impala
● New Utilization Aware AutoScaling
● Impala Threading Model Review
● New Cpu Cost Model
● Evaluation
● Future Work

2

What is Apache Impala?

• Distributed, massively parallel SQL database engine
• Main focus is speed

– frontend (query planning, optimisation) is in Java
– backend (distributed query execution) is written in C++

• Uses LLVM runtime code generation for speed
• Data Caching for remote storage

3

What is Apache Impala?

• Flexible
– Storage Systems: HDFS, Ozone, S3, ADLS, Kudu, …
– File Format : Parquet, Text, Sequence, Avro, ORC, …
– Table Formats : External, ACID, Iceberg

• Supports Intel and ARM Processors
• Enterprise-grade

– authorization, authentication, lineage tracing, auditing, wire and rest encryption
• Scalable

– >1400 customers, >97000 machines
– Large clusters with 500+ nodes

4

Apache Impala Architecture
Coordinator handles query requests

● Compile queries
Parse, Analyze, Plan, Optimize, Schedule

● Cache metadata
● Admission control

Executor
● Distributed query execution

5

Query Compiler

Query Coordinator

Local M
etadata

C
ache

Query Executor

Hive Metastore

Storage Master
Nodes

StateStore

FE
(Java)

BE (C++)

HDFS/Ozone Kudu S3/ADLS/GCP HBase

Impala Coordinator Impala Executors

Metadata & Control

Execution

Storage

Ranger

Query Executor
Query Executor

Query Executor
Query Executor

Query Executor

Query Executor
Query Executor

Query Executor
Query Executor

Query Executor
Query ExecutorQuery Executor

CatalogD

Cached Table
Metadata

Scaling Impala

6

Scaling the Impala Compute Cluster
Current implementation

STATESTORE

COORDINATOR

SQL CLIENTS

CATALOG

IMPALA AUTOSCALER*

EXECUTOR GROUP

EXECUTOR

EXECUTOR

EXECUTOR GROUP

EXECUTOR

EXECUTOR

Scaling

● Cloud enables on-demand compute
provisioning

● Executor Groups are the unit of scaling
of Impala in an on-demand environment

● Sized large enough to run most queries

● Queries cannot span between Executor
Groups

● Each query runs on the first Executor
Group with available capacity

7

*Impala Autoscaler is an external component which scales Impala based on certain metrics

Scaling the Impala Compute Cluster
Current implementation

STATESTORE

COORDINATOR

SQL CLIENTS

CATALOG

IMPALA AUTOSCALER*

EXECUTOR GROUP

EXECUTOR

EXECUTOR

EXECUTOR GROUP

EXECUTOR

EXECUTOR

Scaling

EXECUTOR GROUP

EXECUTOR

EXECUTOR

● Queries are queued when all Executor
Group is “full” in terms of Memory or
CPU

● Executor Groups are added when
queries are queued

● Idle Executor Groups are deleted (after
a configurable delay)

8

*Impala Autoscaler is an external component which scales Impala based on certain metrics

Problem: Handling Mixed Workloads
Most workloads are mixed of small & large queries. Some are more mixed than others.

9

Impala should measure the expected utilization of incoming query
and scale the size of Compute Cluster accordingly

○

● Use a large enough Compute Cluster to handle the largest query
○ Low utilization and increased cost
○ Prone to noisy neighbor problems

● Use separate Compute Clusters for different query sizes
○ Incurs multiple cluster cost and management overhead
○ Shift the burden of responsibility to end users

Not ideal and could lead to poor performance and/or low utilization

10

New: Utilization Aware AutoScaling

New: Utilization Aware Autoscaling
Multiple executor group sets

STATESTORE

COORDINATOR

SQL CLIENTS

CATALOG

IMPALA AUTOSCALER*

EXECUTOR GROUP

EXECUTOR

EXECUTOR

EXECUTOR GROUP

EXECUTOR

EXECUTOR

Scaling

EXECUTOR GROUP

EXECUTOR

EXECUTOR

group-set-small

EXECUTOR GROUP

EXECUTOR

EXECUTOR

EXECUTOR

EXECUTOR

EXECUTOR

EXECUTOR

EXECUTOR

EXECUTOR

group-set-large

● Allows multiple sizes of Executor Groups
● Each size is an “Executor Group Set”
● Each Executor Group Set is associated with its own

Request Pool

11

*Impala Autoscaler is an external component which scales Impala based on certain metrics

New: Utilization Aware Autoscaling
Multiple executor group sets

STATESTORE

COORDINATOR

SQL CLIENTS

CATALOG

IMPALA AUTOSCALER*

EXECUTOR GROUP

EXECUTOR

EXECUTOR

EXECUTOR GROUP

EXECUTOR

EXECUTOR

Scaling

EXECUTOR GROUP

EXECUTOR

EXECUTOR
● Each Executor Group Set (EGS) scales independently
● Can configure many EGS, but 2-3 are recommended.
● Impala sets REQUEST_POOL which maps to an EGS
● Overridable using REQUEST_POOL query option, ie.

set REQUEST_POOL=”root.group-set-large”;

group-set-small

EXECUTOR GROUP

EXECUTOR

EXECUTOR

EXECUTOR

EXECUTOR

EXECUTOR

EXECUTOR

EXECUTOR

EXECUTOR

group-set-large

EXECUTOR GROUP

EXECUTOR

EXECUTOR

EXECUTOR

EXECUTOR

EXECUTOR

EXECUTOR

EXECUTOR

EXECUTOR

12

*Impala Autoscaler is an external component which scales Impala based on certain metrics

New: Utilization Aware Autoscaling
The benefits

1. Maximizes utilization, reduce cloud spend, and retain performance
a. Node allocation follows incoming workload
b. Enables multiple groups sizes - no longer a single step function
c. More flexibility for tuning cluster capacity

13

3. Simplify sizing and planning from the user perspective
a. User only see 1 cluster handling all sizes of queries

2. Preserves performance of queries using transient resources
a. Can pin a few smaller groups for low-latency response
b. Larger groups can spin up on-demand only as large queries arrive.

14

Next to solve: Utilization Aware Scheduling

1. Given an Executor Group Sets, what is the best way
to schedule the query operators?

2. How can Impala decide which queries should go to which
Executor Group Sets?

Impala Threading Model
Review

15

● Row-based, Volcano-style (iterator-based with
batches) with Exchange operators

● Query fragment (unit of work):
○ Portion of the plan tree that operates on the same data

partition on a single machine (coded in same color)

○ Each fragment is executed in one or more impalads

● Row batches stream from leaf fragments towards
the root, with “stop-and-go” transformation at
blocking operators.

Impala Query Execution

TPC-DS Q3

16

https://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper28.pdf

Blocking Op

Blocking Op

Blocking Sink

Blocking Sink

https://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper28.pdf

Classic Impala Threading Model (scale out)

Characteristic
● Single “main” thread per fragment per host
● Dynamic multithreading within scan (based on

available “thread tokens”)
● Dynamic multithreading for join builds (branches

of plan tree run in parallel)

17

Challenges
● Single “main” thread causes expensive joins,

aggs, sorts, etc.
● Poor resource utilisation (1 busy core on a 40

core server is bad)
● Hard resource management - how many cores

does a query want?
● Higher latency for users

Agg [stream]
HJ [b, 8]
HJ [b, 7]
Scan [store_sales]

F00

Executor 1

CPUs

Agg [stream]
HJ [b, 8]
HJ [b, 7]
Scan [store_sales]

F00

Executor 2

CPUs

Agg [stream]
HJ [b, 8]
HJ [b, 7]
Scan [store_sales]

F00

Executor 3

CPUs

Agg [stream]
HJ [b, 8]
HJ [b, 7]
Scan [store_sales]

F00

Executor 4

CPUs

Multi-Threaded Execution (scale up)

● Impala 4.0: MultiThreading in all query operators (Scan, Aggregation, HashJoin, Sort, Analytic, etc)
● set MT_DOP = N (MultiThreading Degree Of Parallelism)
● Each Fragment can launch up to N copies of fragment instances per host
● Linear speedup for most operations (read more in this blog)
● Tradeoff:

○ Parent fragments can over parallelize, because they match up parallelism of children
○ Underutilize memory and oversubscribed N CPU per host for the whole query

18

Agg [stream]
HJ [b, 8]
HJ [b, 7]
Scan [store_sales]

F00

Executor 1

CPUs

Agg [stream]
HJ [b, 8]
HJ [b, 7]
Scan [store_sales]

F00
Agg [stream]
HJ [b, 8]
HJ [b, 7]
Scan [store_sales]

F00
Agg [stream]
HJ [b, 8]
HJ [b, 7]
Scan [store_sales]

F00

Agg [stream]
HJ [b, 8]
HJ [b, 7]
Scan [store_sales]

F00

Executor 2

CPUs

Agg [stream]
HJ [b, 8]
HJ [b, 7]
Scan [store_sales]

F00
Agg [stream]
HJ [b, 8]
HJ [b, 7]
Scan [store_sales]

F00
Agg [stream]
HJ [b, 8]
HJ [b, 7]
Scan [store_sales]

F00

Agg [stream]
HJ [b, 8]
HJ [b, 7]
Scan [store_sales]

F00

Executor 3

CPUs

Agg [stream]
HJ [b, 8]
HJ [b, 7]
Scan [store_sales]

F00
Agg [stream]
HJ [b, 8]
HJ [b, 7]
Scan [store_sales]

F00
Agg [stream]
HJ [b, 8]
HJ [b, 7]
Scan [store_sales]

F00

Agg [stream]
HJ [b, 8]
HJ [b, 7]
Scan [store_sales]

F00

Executor 4

CPUs

Agg [stream]
HJ [b, 8]
HJ [b, 7]
Scan [store_sales]

F00
Agg [stream]
HJ [b, 8]
HJ [b, 7]
Scan [store_sales]

F00
Agg [stream]
HJ [b, 8]
HJ [b, 7]
Scan [store_sales]

F00

https://blog.cloudera.com/new-multithreading-model-for-apache-impala/

New: CPU Costing Model

19

Accurate Sizing of Memory & CPU requirement

● Sizing Memory
Simple addition of memory estimates for all fragment instances scheduled in a single host.

● But how to size CPU requirements?
Unlike memory, it is OK to oversubscribe CPU a little bit.
Fragments must scale independently based on their amount of work.

● Improve MT_DOP model by adding following steps
a. Create a ProcessingCost model for each fragment
b. Determine effective parallelism of each fragment
c. Match up parallelism between producer vs consumer fragments
d. Sum-and-overlap the CPU count

20

What is ProcessingCost?

● Weighted amount of data to process by a query operator.
(IMPALA-11604 part1, IMPALA-12657).

● Describes how compute-intensive a certain query operator is.
● Each kind of query operator has its own cost model.
● Based on the benchmark data.

1 unit of cost corresponds to 100 nanoseconds of expected CPU time on a
single core for a given operator.

21

https://github.com/apache/impala/commit/29ad046d05869bed7489bc487636e0f64b3328aa
https://github.com/apache/impala/commit/25a8d70664ce4c91634e1377e020a4d7fa8b09c0

Analyze ProcessingCosts of a Fragment

● Begin with calculating ProcessingCost for
individual query operators.

● Split a fragment into Segments with a blocking
operator at boundary.
Adjacent Segment execute serially. Therefore,
CPUs from the previous Segment are reusable by
the next Segment.

● Sum ProcessingCost for all operators in one
Segment into a SegmentCost.

For example, given the following fragment plan:

F03:PLAN FRAGMENT [HASH(i_class)] hosts =3
instances=3
segment-costs=[34550429, 2159270, 23752870, 1]
08:TOP-N [LIMIT=100]
| cost=900
|
07:ANALYTIC
| cost=23751970
|
06:SORT
| cost=2159270
|
12:AGGREGATE [FINALIZE]
| cost=34548320
|
11:EXCHANGE [HASH(i_class)]
cost=2109

The post-order traversal of rootSegment_ tree show processing cost
detail of [(2109+34548320), 2159270, (23751970+900), 1].
The DataSink with cost 1 is a separate segment since the last PlanNode
(TOP-N) is a blocking node.

Seg 0

Seg 1

Seg 2

Seg 3

22

Determine Effective Parallelism of each Fragment

● Given a fragment, how many copies of fragment instances to schedule such that they
complete within reasonable time?

● The SegmentCost list provides estimated CPU costs.
1 unit of cost is roughly 100 nanosecs on a single core.

● So the SegmentCosts can be translated into a target num CPU by dividing max
SegmentCosts with a desired constant (--min_processing_per_thread=10M).

● This results in a target core count (parallelism) that attempts to allocate ~10M cost units
(1 second of CPU time) on each core.

F03:PLAN FRAGMENT [HASH(i_class)] hosts =3
instances=3
segment-costs=[34550429, 2159270, 23752870, 1]

23

Match Parallelism of Producer vs Consumer

● Fragments produce and consume rows at
different rates. Need to avoid resource waste if
one fragment can’t keep up with the other
fragment.

● Scale adjacent fragments so that row production
rate and row consumption rate between them are
roughly equal.

● Parallelism follows the ratio between per-row
production cost of child vs per-row consumption
cost of parent.

● Enforces min and max parallelism bounding from
query options or Executor Group Set
configuration.

● Adjusted bottom-up from scanners up to plan root.

Cost: 16,401,899,488
Cost/row consumed: 3.797
Instance count: 240

Cost: 264,727,776
Cost/row produced: 0.061
Instance count: 30

24

TPC-DS Q3

Blocking Op

Blocking Op

Blocking Sink

Blocking Sink

25

Overlap CPU between Blocking Subtrees

Fragments don’t get busy at the same time

Sum-and-Overlap CPU Count

● Identify all blocking points in the plan tree and overlap
CPU requirements between plan subtrees.

● At blocking fragment, take the max between current
subtree’s total CPU vs total CPU of child subtrees.

TPC-DS Q3

14

11

max(240, 14 + 11)

max(10, 240)

max(1, 240)

F03:PLAN FRAGMENT [HASH(dt.d_year,item.i_brand,item.i_brand_id)] hosts=10 instances=10 (adjusted from
240)
Per-Instance Resources: mem-estimate=78.20MB mem-reservation=34.00MB thread-reservation=1
max-parallelism=10 segment-costs=[36475081, 300, 6]
cpu-comparison-result=240 [max(10 (self) vs 240 (sum children))]

26

Recap on CPU Costing Model

1. Create a ProcessingCost model for each fragment
ProcessingCost for individual operator
SegmentCost(s) for individual fragment

2. Determine effective parallelism of each fragment
max(SegmentCost) / min_processing_per_thread

3. Match up parallelism of producer vs consumer fragment
Compare per-row production cost vs per-row consumption cost

4. Sum-and-overlap the CPU count
Overlap CPU between Blocking Fragments

27

Query to Executor Group Set assignment

● First, compile the query against the smallest
Executor Group Set.

● Compare the requested resources against
configured resources.

○ If MemoryAsk <= MemoryMax AND CpuAsk <=
CpuMax, then assign to the current Executor
Group Set. Otherwise, step up to the next
larger Executor Group Set and recompile
query.

● Largest Executor Group Set is a “catch all” group.

Frontend:
...
 - ExecutorGroupsConsidered: 2 (2)
 Executor group 1 (root.group-set-small):
 Verdict: not enough cpu cores
 - CpuAsk: 240 (240)
 - CpuMax: 48 (48)
 - EffectiveParallelism: 240 (240)
 - MemoryAsk: 7.91 GB (8489792424)
 - MemoryMax: 100.00 GB (107374182400)
 Executor group 2 (root.group-set-large):
 Verdict: Match
 - CpuAsk: 240 (240)
 - CpuMax: 240 (240)
 - EffectiveParallelism: 240 (240)
 - MemoryAsk: 8.64 GB (9272936930)
 - MemoryMax: 500.00 GB (536870912000)

28

Evaluation

29

Workload Characteristics

30

● Concurrent Workload
○ Subset of TPC-DS 3TB scale

■ Small (14 queries), Medium (14 queries) and Large (8 queries)
○ 60 concurrent users

■ 30 running Small, 20 running Medium and 10 running Large queries
■ No think time

● Regular Impala
○ 36 nodes of r5d.4xlarge, MT_DOP model, fixed Executor Group size

■ 4 executor groups, each with 9 nodes

● Workload Aware Impala
○ 36 nodes of r5d.4xlarge, CPU Costing model, optimized for interactive queries

■ 6 small executor groups, each with 2 nodes
■ 2 medium executor groups, each with 6 nodes
■ 1 large executor group with 12 nodes

Results

31

Results

32

[Small] [Medium] [Large]

Future work
● Performance tuning.

● Consider other resources for planning queries.

○ Local disk capacity for spilling & caching, network bandwidth,
file handles, etc.

● More flexible Auto Sizing

○ Dynamically update executor group size based on workload history

○ More elastic executor group based scaling model (nodes to EG assignment)

○ SLA aware planning and scheduling of queries

33

Contributing to Apache Impala

Mailing lists:
● user@impala.apache.org (users), subscribe by mailing

user-subscribe@impala.apache.org
● dev@impala.apache.org (developers), subscribe by mailing

dev-subscribe@impala.apache.org

Issues: https://issues.apache.org/jira/browse/IMPALA
Twitter: @ApacheImpala
Slack: apache-impala.slack.com

34

mailto:user@impala.apache.org
mailto:user-subscribe@impala.apache.org
mailto:dev@impala.apache.org
mailto:dev-subscribe@impala.apache.org
https://issues.apache.org/jira/browse/IMPALA
https://twitter.com/apacheimpala
http://apache-impala.slack.com

Thank you!
Questions?

llama config for Utilization Aware Scheduling

 <property>
 <name>impala.admission-control.max-query-mem-limit.root.small</name>
 <!-- 90 MB -->
 <value>94371840</value>
 </property>

 <property>
 <name>impala.admission-control.min-query-mem-limit.root.small</name>
 <!-- 0MB -->
 <value>0</value>
 </property>

 <property>
 <name>impala.admission-control.max-query-cpu-core-per-node-limit.root.small</name>
 <value>8</value>
 </property>

36

Tuneable knobs

● Query options
○ COMPUTE_PROCESSING_COST
○ PROCESSING_COST_MIN_THREADS
○ MAX_FRAGMENT_INSTANCES_PER_NODE
○ QUERY_CPU_COUNT_DIVISOR

● Flags
○ --min_processing_per_thread
○ --skip_resource_checking_on_last_executor_group_set
○ --query_cpu_root_factor
○ --processing_cost_use_equal_expr_weight

37

