
Impalas living on Iceberg
Gabor Kaszab, Impala PMC member

Contents

1. Introduction
Iceberg
Impala

2. Row-level deletes
Concepts
Implementation
Performance

3. Metadata table queries
Implementation

4. Catalogs
Current state
Future plans

+1 Iceberg V3 positional deletes

1. Introduction - Iceberg

● Popular table format
● Defines how to:

○ Organize table data and metadata
○ Interact with meta/data -> Spec

● Table metadata on storage
● Famous features:

○ Flexible partitioning (transforms)
○ Partition/schema evolution
○ Time travel
○ Branching and tagging
○ Row-level modifications

● Library/API
○ Clients can interact with tables

● Catalogs
○ HMS, Glue, JDBC Rest (Polaris)

1. Introduction - Iceberg

● CREATE TABLE tbl (i int, s string)
 PARTITIONED BY SPEC (truncate(3, s))
 STORED AS ICEBERG
 TBLPROPERTIES ('format-version'='2');

● INSERT INTO tbl VALUES (1, "abcd"), (2, "xyz1");

● INSERT INTO tbl VALUES (3, "abcxyz");

1. Introduction - Impala

Query Compiler

Impala coordinator

Compiler

Analyzer

Planner

Scheduler

M
etadata

Impala executor Impala executorImpala executor

HDFS S3 Kudu HBase

 Catalogd

Metadata

Hive
Metastore

Iceberg
catalog

C++

Java

Query SQL

loadTable()

Table obj
Result

planFiles(
)

1. Introduction - Impala

SELECT count(1), avg(a1.int_col)
FROM
 functional_parquet.alltypes a1,
 functional_parquet.alltypes a2
WHERE
 a1.id = a2.id AND
 a1.id % 2 = 0
GROUP BY a1.int_col;

- Query plan example

Contents

1. Introduction
Iceberg
Impala

2. Row-level deletes
Concepts
Implementation
Performance

3. Metadata table queries
Implementation

4. Catalogs
Current state
Future plans

+1 Iceberg V3 positional deletes

2. Row-level deletes - Concepts

Merge-on-read
● Tracking deleted rows in a

separate “delete file”
● Good for frequent, small

modifications
● Low write amplification
● High read amplification
● Table maintenance is a

MUST

Copy-on-write
● Replaces old data files with

rewritten data files
● Useful for infrequent, large

modifications
● High write amplification
● No read amplification

DELETE FROM tbl WHERE id = 15;

2. Row-level deletes - Concepts

Positional deletes
● File_path + position
● Slower writes
● Better perf. to read

Equality deletes
● Schema depends on

‘identifier-field-ids’
● Cheap to write
● Inefficient to read

DELETE FROM tbl WHERE id = 15;

‘path1/abc.parquet’ 13

‘path1/abc.parquet’ 1234

‘path2/xyz.parquet’ 1

ID

15

ID_col1 ID_col2 ID_col3

42 “string” 07.10.2024

2. Row-level deletes - Implementation

● Read data files w/o deletes
● Read delete files
● Read data file w/ deletes

but add virtual columns

Position delete Anti-Join condition:
tbl.INPUT__FILE__PATH = DEL-tbl.file_path AND
tbl.FILE__POSITION = DEL-tbl.position

Equality delete Anti-Join condition:
tbl.ID_col1 IS NOT DISTINCT FROM DEL-tbl.ID_col1 AND … AND
tbl.DATA__SEQUENCE__NUMBER < DEL-tbl.DATA__SEQUENCE__NUMBER

2. Row-level deletes - Implementation

2. Row-level deletes - Pos delete read performance - 1
Details for performance measurement:

● Table with 8.64bn rows. ~10% deleted by position delete files.
● Query: SELECT count(1) ran approx 21 sec

2. Row-level deletes - Pos delete read performance - 1

Partitioned
Cost:
#rows_left_scan + rows_right_scan

Broadcast
Cost: #rows_right_scan * #JOIN_nodes

2. Row-level deletes - Pos delete read performance - 1

Directed
Cost: #rows_right_scan● DIRECTED distribution mode:

Use ‘file_path’ in delete file to route rows
● No need to send ‘left’ rows
● No need to broadcast ‘right’ rows
● Cost: #rows_right_scan
● Reduced query runtime by 42%

2. Row-level deletes - Pos delete read performance - 2
Another measurement:

● Table with 1 trillion rows. ~68.5bn rows deleted by position delete files.
● Query: SELECT count(1) ran approx 7m15s

2. Row-level deletes - Pos delete read performance - 2

JOIN BUILD: 4m46s

- We build hashmap:
(“file path” -> vector<positions>)

- Many re-allocation when adding positions
to the vector

- Instead build hashmap:
(“file_path” -> RoaringBitmap<positions>)

- Join build from 4m46s -> 1m49s
- Query runtime: 7m15s -> 4m59s

2. Row-level deletes - Pos delete read performance - 3

EXCHANGE SENDER: ~1m

- File paths being sent redundantly
- Pos dels ordered by file path.
- Remove redundancy

- Exchange sender from ~1m -> ~21.5s
- Query runtime: 7m15s -> 4m59s -> 3m59s

StringVal int64 “long_file_path.parq” StringVal int64 “long_file_path.parq”StringVal int64 “long_file_path.parq”

“long_file_path” StringVal int64 StringVal int64 StringVal int64

Contents

1. Introduction
Iceberg
Impala

2. Row-level deletes
Concepts
Implementation
Performance

3. Metadata table queries
Implementation

4. Catalogs
Current state
Future plans

+1 Iceberg V3 positional deletes

3. Metadata table queries - Implementation

Iceberg API to query metadata tables:

SELECT
 s.operation,
 h.is_current_ancestor,
 s.summary
FROM db_name.iceberg_table_name.history h
JOIN db_name.iceberg_table_name.snapshots s
 ON h.snapshot_id = s.snapshot_id
WHERE s.operation = 'append'
ORDER BY h.made_current_at;

data_files
delete_files
entries
files
manifests

all_data_files
all_delete_files
all_entries
all_files
all_manifests

history
metadata_log_entries
partitions
position_deletes
refs
snapshots

Table metaTbl = MetadataTableUtils.createMetadataTableInstance(
 tbl, /* An Iceberg table object */
 MetadataTableType.PARTITIONS);
for (FileScanTask task : metaTbl.newScan().planFiles()) {
 for (StructLike row : ((DataScan)task).rows()) {
 // Get fields from ‘row’
 }
}

3. Metadata table queries - Implementation

Query Compiler

Impala coordinator

Compiler

Analyzer

Planner

Scheduler

M
etadata

Impala executor Impala executorImpala executor

HDFS S3 Kudu HBase

 Catalogd

Metadata

Hive
Metastore

Iceberg
catalog

C++

Java

loadTable()

Table obj

?

??

3. Metadata table queries - Implementation
Thought process:

- Implement metadata SCAN in Executor?
- SCAN would fit into Impala’s

architecture (plan tree).
- Would need C++ Iceberg API or

implement reads for ourselves
- Answer metadata SCAN in coordinator?

- It’s Java, simple to implement
- Can’t do ‘regular query’ functionality

like joining, aggregating, etc.
- Still, should do the SCAN as part of the plan

tree

3. Metadata table queries - Implementation
Solution:

- SCAN ICEBERG METADATA node on C++
side

- Metadata Scanner on Java side
- JNI call from C++ to Java to get rows

Trade-offs and difficulties:
- Metadata SCANs are coordinator only

- There is C++ and Java too
- Beware! GC vs access from C++
- Type conversion from Java to C++
- Extra steps to populate ‘RowBatch‘
- Code readability
- Performance?

Contents

1. Introduction
Iceberg
Impala

2. Row-level deletes
Concepts
Implementation
Performance

3. Metadata table queries
Implementation

4. Catalogs
Current state
Future plans

+1 Iceberg V3 positional deletes

4. Catalogs - Currently

 Catalogd

Metadata

Hive
Metastore

Iceberg
catalog

Iceberg catalogs:
- HiveCatalog, HadoopCatalog, JdbcCatalog,

NessieCatalog, RestCatalog, GlueCatalog,
SnowflakeCatalog, etc.

Catalogs supported by Impala:
- HiveCatalog and HadoopCatalog (non-prod)

Other limitations:
- Heavy HMS dependency
- Full table name: DB.TBL instead of CATALOG.DB.TBL
- No flexibility for configuration

4. Catalogs - Future plans

● More catalog types: RESTCatalog!
● Catalog abstraction on top of DB.TBL
● More flexible creation + configuration
● Reduce HMS dependency
● We have a PoC!

Query Compiler

Impala coordinator

Compiler

Analyzer

Planner

Scheduler

M
etadata

 Catalog

Metadata

Hive
Metastore

Iceberg
catalog

loadTable()

Table obj

Solution ASolution B

Contents

1. Introduction
Iceberg
Impala

2. Row-level deletes
Concepts
Implementation
Performance

3. Metadata table queries
Implementation

4. Catalogs
Current state
Future plans

+1 Iceberg V3 positional deletes

+1 Iceberg V3 positional deletes

V2 Positional deletes
● File_path + position
● Single delete file for multiple

data files
● New deletes for writes

V3 Positional deletes
● Delete vector as a RoaringBitmap
● One delete vector for one data file
● Multiple bitmaps in a Puffin file
● File path + offset + length stored in

Iceberg metadata
● Merge bitmaps for writes

‘path1/abc.parquet’ 13

‘path1/abc.parquet’ 1234

‘path2/xyz.parquet’ 1

Proposal for new Positional delete design

[Puffin header][bitmap1]...[bitmapN][Puffin footer]

https://docs.google.com/document/d/18Bqhr-vnzFfQk1S4AgRISkA_5_m5m32Nnc2Cw0zn2XM

+1 Iceberg V3 positional deletes

Exploring opportunities
1) Delete SCAN node to read

bitmaps and return as if V2
2) Delete SCAN to read bitmaps

and return bitmaps
3) No Delete SCAN node, JOIN

BUILD to read bitmaps
Difficulties

- Need a C++ Puffin reader and writer
- Merge bitmaps before writing
- Cross language compatibility?

Questions?

